Charge Sharing and Clustering in Pixel Layer

Svx Software Meeting Feb. 23, 2009

Kenichi Nakano

RIKEN

Updates since Feb. 09

- ► Fixed the problem that some GEANT hits have no associated clusters
 - two causes
 - one bug in code (hits across sensor edge were skipped)
 - one drawing problem (hits outside sensors were drawn)
 - ▷ now works fine (see next slide)
- ▶ It has been committed to PHENIX CVS
- ► To-do items (not critical to blind analysis)
 - ▶ properly set the cluster size field in pixel layer (now the ADC value of a cluster in pixel layer means the N of pixels grouped)
 - ▶ make a cluster *local*-size field as well as *global* one
 - other minor issues on strip/stripixel

Event display — I

► Layer 0, Ladder 0, Before-Fix Version

21.8 cm width, 1.28 cm height / •: GEANT hit, •: cluster

Event display — II

Layer 0, Ladder 0

21.8 cm width, 1.28 cm height / •: GEANT hit, •: cluster

▷ double hit (for example at $(z_{ch}, x_{ch}) = (355, 15)$) is made by one GEANT hit on two neighboring sections

Event display — III

Layer 1, Ladder 0

21.8 cm width, 1.28 cm height / •: GEANT hit, •: cluster

Event display — IV

Layer 2, Ladder 0

- •: GEANT hit, •: cluster, □: ghost cluster
- ▷ no cluster for some GEANT hits (probably low ADC)

Event display — V

Layer 3, Ladder 0

•: GEANT hit, •: cluster, □: ghost cluster

Backup Slides...

Charge Sharing and Clustering in Pixel Layer

- Charge sharing (Manabu's work)
 - ▷ for each GEANT hit, charges are shared by the fraction of a path length in each pixel toward the total path length
 - ▶ the effect of charge diffusion not yet considered
 - \triangleright (note) ADC = 0 or 1, no noise
- Clustering
 - just gather fired pixels neighboring in x or z directions (8 pixels around a initial fired pixel are candidates)
 - cluster position is just the mean value of pixel positions
 - ▷ no clustering across sections
 - ▶ one pixel sensor consists of 7 sections (0 to 6)
 - $^{\triangleright\triangleright}$ sensors 0, 2, 4, 6 are under readout chips and consist of 30 or 31 pixels in z with 425 $\mu\mathrm{m}$
 - $^{\triangleright\triangleright}$ sensors 1, 3, 5 are between readout chips and consist of 2 pixels in z with 625 $\mu\mathrm{m}$